
Compiler Validation by Program Analysis of the
Cross-Product

Anna Zaks, Amir

New York University

2009 LLVM Developer Meeting

Compiler Validation by Program Analysis of the
Product

1

, Amir Pnueli

New York University

2009 LLVM Developer Meeting

Usually …
bool turn, flag[2];
P0:

flag[0] := 1;
turn = 1;
while (flag[1] ==1 && turn == 1)

; /* busy wait */
/* critical section */
flag[0] = 0;
goto P0;

...

CorrectCorrectCorrectCorrect!!!!

BUGS ARE EVERYWHERE!

Ensuring Correctness of Compiled Code

• A bug in the Therac-25 radiation therapy machine was responsible for 5 patient deaths

• Northeast Blackout of 2003 was triggered by a local outage that went undetected due to a
race condition in the GE's monitoring software

• Smartship USS Yorktown had to be towed into a naval base after an unhandled division by
zero error caused its propulsion system to fail

Usually …

BUGS ARE EVERYWHERE!

Ensuring Correctness of Compiled Code 2

25 radiation therapy machine was responsible for 5 patient deaths (80’s)

Northeast Blackout of 2003 was triggered by a local outage that went undetected due to a
race condition in the GE's monitoring software (2003)

Smartship USS Yorktown had to be towed into a naval base after an unhandled division by
zero error caused its propulsion system to fail (1997)

Use a Tool to Check Correctness
bool turn, flag[2];
P0:

flag[0] := 1;
turn = 1;
while (flag[1] ==1 && turn == 1)

; /* busy wait */
/* critical section */
flag[0] = 0;
goto P0;

...

CorrectCorrectCorrectCorrect!!!!

CorrectCorrectCorrectCorrect!!!!

Ensuring Correctness of Compiled Code

Much better

BUT

What you check is not what you execute!!!

Use a Tool to Check Correctness

Ensuring Correctness of Compiled Code 3

Much better

BUT

What you check is not what you execute!!!

What you Check is not what you Execute!
bool turn, flag[2];
P0:

flag[0] := 1;
turn = 1;
while (flag[1] ==1 && turn == 1)

; /* busy wait */
/* critical section */
flag[0] = 0;
goto P0;

...

CorrectCorrectCorrectCorrect!!!!

CorrectCorrectCorrectCorrect!!!!

Ensuring Correctness of Compiled Code

static int sh_f0, sh_f1, sh_last;

void * run_thread0 () {
struct pa_desc d;
d.f0 = &sh_f0;
d.f1 = &sh_f1;
d.last = 1;
for (;;) {

*(d.f0)=1;
sh_last=d.last ;
while (*(d.f1)==1 && (last==d.last)) {

; /* busy wait */
}
/* critical section */
d.f0=0;

}
}
…

What you Check is not what you Execute!
…
entry:
%tmp1 = getelementptr %struct.pa* %d, i32 0, i32 0
%tmp2 = load i32** %tmp1
store i32 1, i32* %tmp2
%tmp4 = getelementptr %struct.pa* %d, i32 0, i32 2
%tmp5 = load i32* %tmp4
store i32 %tmp5, i32* @pa last
%tmp8 = getelementptr %struct.pa* %d, i32 0, i32 1
%tmp9 = load i32** %tmp8
br label %bb6

bb6:
%tmp10 = load i32* %tmp9
%tmp11 = icmp eq i32 %tmp10, 1
br i1 %tmp11, label %cond next, label %return

...

Ensuring Correctness of Compiled Code 4

static int sh_f0, sh_f1, sh_last;

void * run_thread0 () {

while (*(d.f1)==1 && (last==d.last)) {
; /* busy wait */

/* critical section */
ORC

Compiler Verification
bool turn, flag[2];
P0:

flag[0] := 1;
turn = 1;
while (flag[1] ==1 && turn == 1)

; /* busy wait */
/* critical section */
flag[0] = 0;
goto P0;

...

CorrectCorrectCorrectCorrect!!!!

CorrectCorrectCorrectCorrect!!!!

• Verify that the optimization pass
preserves the semantics of the program

• Only intraprocedural, structure
preserving optimizations are supported

The verifier must be sound

• Verify that the optimization pass
preserves the semantics of the program

• Only intraprocedural, structure
preserving optimizations are supported

The verifier must be sound

Ensuring Correctness of Compiled Code

static int sh_f0, sh_f1, sh_last;

void * run_thread0 () {
struct pa_desc d;
d.f0 = &sh_f0;
d.f1 = &sh_f1;
d.last = 1;
for (;;) {

*(d.f0)=1;
sh_last=d.last ;
while (*(d.f1)==1 && (last==d.last)) {

; /* busy wait */
}
/* critical section */
d.f0=0;

}
}
…

• The verifier must be sound• The verifier must be sound

Compiler Verification
…
entry:
%tmp1 = getelementptr %struct.pa* %d, i32 0, i32 0
%tmp2 = load i32** %tmp1
store i32 1, i32* %tmp2
%tmp4 = getelementptr %struct.pa* %d, i32 0, i32 2
%tmp5 = load i32* %tmp4
store i32 %tmp5, i32* @pa last
%tmp8 = getelementptr %struct.pa* %d, i32 0, i32 1
%tmp9 = load i32** %tmp8
br label %bb6

bb6:
%tmp10 = load i32* %tmp9
%tmp11 = icmp eq i32 %tmp10, 1
br i1 %tmp11, label %cond next, label %return

...

preserves the semantics of the program

preserving optimizations are supported

preserves the semantics of the program

preserving optimizations are supported

Ensuring Correctness of Compiled Code 5

static int sh_f0, sh_f1, sh_last;

void * run_thread0 () {

while (*(d.f1)==1 && (last==d.last)) {
; /* busy wait */

/* critical section */
ORC

Existing Translation Validation Tools

S T

Translation Validator

Ensuring Correctness of Compiled Code

(proves S ∼∼∼∼

• Translation validation for an optimizing compiler
• Translation Validation of Optimizing Compilers
• Symbolic transfer function-based approaches to certified compilation
Rival, 2004

Existing Translation Validation Tools

Translation Validator

Compiler
annotations

Ensuring Correctness of Compiled Code

T)

Translation validation for an optimizing compiler, Necula, 2000
Translation Validation of Optimizing Compilers, NYU, 2003

based approaches to certified compilation,

CoVaC: Compiler Validation via Program Analysis of
the Cross Product

Composer
(creates C = S

S T

Ensuring Correctness of Compiled Code

Existing analysis and tools

(prove: C satisfies specification

• Precision of the analysis and the
• Effort ↓↓↓↓

: Compiler Validation via Program Analysis of
the Cross Product

Composer
C = S X T)

Ensuring Correctness of Compiled Code

Existing analysis and tools

satisfies specification ϕ)

and the validator correctness ↑↑↑↑

CoVaC: When the Semantics are Preserved?

S ∼
in(Y);

in(X);

S = 0;

Ensuring Correctness of Compiled Code

out(S);

T ∼∼∼∼ S if for every observation of S, there exists a stuttering equivalent
observation of T and vise versa:

in

in

S = 0;
for (i=1; i<Y; i++) { S += X; }

: When the Semantics are Preserved?

T∼
in(y);

in(x);

;

Ensuring Correctness of Compiled Code

out(x*y);

, there exists a stuttering equivalent

8

…

…

out

out

;
for (i=1; i<Y; i++) { S += X; }

Comparison Graph

A comparison graph C = S X T repr
the source and target procedures,
• each computation of C corresponds to computations in
• each computation of S or T is represented in

Ensuring Correctness of Compiled Code

Comparison Graph

represents simultaneous execution of
the source and target procedures, S and T:

corresponds to computations in S and T
is represented in C

Ensuring Correctness of Compiled Code 9

A Witness

n

ϕϕϕϕn out(V
out(V

C = S X T is a witness of correct translation
program invariant implying the equivalence
ϕϕϕϕn →→→→ VS = VT.

Ensuring Correctness of Compiled Code

Theorem: To check that
1. construct a comparison graph
2. check if C is a witness

A Witness

m

out(VS);
out(VT)

of correct translation if for every output edge, there exists a
lence of the source and target output variables:

Ensuring Correctness of Compiled Code

To check that T ∼∼∼∼ S, it is sufficient to
construct a comparison graph C = S X T

is a witness

10

Comparison Graph Construction

Intended uses of the CoVaC framework:
• construction of self-certifying compilers
• high assurance compilation when debug info is available
• testing of immature compilers (no debug info)

Ensuring Correctness of Compiled Code

Comparison Graph Construction

Intended uses of the CoVaC framework:
certifying compilers

high assurance compilation when debug info is available
testing of immature compilers (no debug info)

Ensuring Correctness of Compiled Code 11

Comparison Graph Construction

0

1

2

(I, C):=(0,5)

in(K, M[A])

(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + 5) ∗∗∗∗ K; I + 1)

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→

S

Ensuring Correctness of Compiled Code

3

4

out (M[P])

(I >10)?

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + C) ∗∗∗∗ K; I + 1)

Optimizations: constant copy propagation, i
instruction scheduling.

Comparison Graph Construction

0

1

2

in(k, m[a])

K; I + 1)
(i<10) →→→→

(m[p + i]; i) := (i ∗∗∗∗ u; i + 1)

(i; u) := (0; k ∗∗∗∗ (m[a] + 5))

T

Ensuring Correctness of Compiled Code

3

4

out (m[p])

(i>10)?

K; I + 1)

tion, if simplification, loop invariant code motion, and

Consonant Transition Graphs

0

1

2

(I, C):=(0,5)

in(K, M[A])

(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + 5) ∗∗∗∗ K; I + 1)

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→

S

Ensuring Correctness of Compiled Code

3

4

out (M[P])

(I >10)?

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + C) ∗∗∗∗ K; I + 1)

Optimizations: constant copy propagation, i
instruction scheduling.

Consonant Transition Graphs

0

1

2

in(k, m[a])

K; I + 1)
(i<10) →→→→

(m[p + i]; i) := (i ∗∗∗∗ u; i + 1)

(i; u) := (0; k ∗∗∗∗ (m[a] + 5))

T

Ensuring Correctness of Compiled Code

3

4

out (m[p])

(i>10)?

K; I + 1)

tion, if simplification, loop invariant code motion, and

Comparison Graph Construction

0

1

2

0 0

(I, C):=(0,5)

(I, C):=(0,5);

S

Ensuring Correctness of Compiled Code

3

4

Comparison Graph Construction

0

1

2

in(k, m[a])

(I, C):=(0,5); ε
T

Ensuring Correctness of Compiled Code

3

4

Comparison Graph Construction

0

1

2

1 0

0 0

in(K, M[A])

in(K, M[A]);
in(k, m[a])

S

Ensuring Correctness of Compiled Code

3

4

Comparison Graph Construction

0

1

2

in(k, m[a])in(K, M[A]);
in(k, m[a])

T

Ensuring Correctness of Compiled Code

3

4

Comparison Graph Construction

0

1

2

0 0

1 0

2 1

(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→ …

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

ε; (i; u) := (0; k

S

Ensuring Correctness of Compiled Code

3

4

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(I >10)?

Comparison Graph Construction

0

1

2

(i; u) := (0; k ∗∗∗∗ (m[a] + 5))
i; u) := (0; k ∗∗∗∗ (m[a] + 5))

T

Ensuring Correctness of Compiled Code

3

4

Comparison Graph Construction

0

1

2

1 0

2 1

2 2

0 0

(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→ …

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

S

Ensuring Correctness of Compiled Code

3

4

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(I >10)?

2 3 3 3

Infeasible paths – inefficient and may lead to false alarms

Comparison Graph Construction

0

1

2
(i ≤≤≤≤ 10)→→→→…

T

Ensuring Correctness of Compiled Code

3

4

(i>10)?

3 2

inefficient and may lead to false alarms

Comparison Graph Construction

0

1

2

1 0

2 1

2 2

0 0

(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→ …

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(

(I

S
(I, C):=(0,5);

in(K, M[A]);
in(k, m[a])

ε; (i; u) := (0; k

Ensuring Correctness of Compiled Code

3

4

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(I >10)?

(I

Match edges only if there exist a path through C
which both conditions are simultaneously enabled:

• Construct ϕϕϕϕ22: (I = 0)∧∧∧∧ (i = 0)

• Match edges iff (ϕϕϕϕ22 ∧∧∧∧ CS ∧∧∧∧

Comparison Graph Construction

0

1

2
(i ≤≤≤≤ 10)→→→→…(I ≤≤≤≤10 ∧∧∧∧ K > 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→ …

I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→…

T
(I, C):=(0,5); ε

in(K, M[A]);
in(k, m[a])

i; u) := (0; k ∗∗∗∗ (m[a] + 5))

Ensuring Correctness of Compiled Code

3

4

(i>10)?

I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→…

there exist a path through CK in
are simultaneously enabled:

= 0)

∧∧∧∧ CT) is satisfiable

Comparison Graph Construction

0

1

2

1 0

2 1

2 2
(I ≤≤≤≤10 ∧∧∧∧ K > 0) →→→→ …

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(

(I

0 0S
(I, C):=(0,5);

in(K, M[A]);
in(k, m[a])

ε; (i; u) := (0; k

Ensuring Correctness of Compiled Code

3

4

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0) →→→→ …

(I >10)?

(I

(I >10 ∧∧∧∧ i >10

ϕϕϕϕ22: (I =

Comparison Graph Construction

0

1

2
(i ≤≤≤≤ 10)→→→→…(I ≤≤≤≤10 ∧∧∧∧ K > 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→ …

I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→…

T
(I, C):=(0,5); ε

in(K, M[A]);
in(k, m[a])

i; u) := (0; k ∗∗∗∗ (m[a] + 5))

Ensuring Correctness of Compiled Code

3

4

(i >10)?

I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→…

i >10)?

(I = i)

Comparison Graph Construction

0

1

2

0 0

1 0

2 1

2 2

S

Ensuring Correctness of Compiled Code

3

4

3 3

out (M[P]) out (M[P]); out (m[p])

Comparison Graph Construction

0

1

2

T

Ensuring Correctness of Compiled Code

3

4

out (m[p])out (M[P]); out (m[p])

Comparison Graph Construction

0

1

2

0 0

1 0

2 1

2 2

S

Ensuring Correctness of Compiled Code

3

4

3 3

4 4

Comparison Graph Construction

0

1

2

T

Ensuring Correctness of Compiled Code

3

4

The Witness Comparison Graph

0 0

1 0

2 1

2 2

(I, C):=(0,5); ε

in(K, M[A]);
in(k, m[a])

ε; (i; u) := (0; k ∗∗∗∗ (m[a] + 5))

Ensuring Correctness of Compiled Code

2 2

3 3

4 4

(I >10 ∧∧∧∧ i >10)?

out (M[P]); out (m[p])

The Witness Comparison Graph

(I ≤≤≤≤10 ∧∧∧∧ K > 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + 5) ∗∗∗∗ K; I + 1)
(m[p + i]; i) := (i ∗∗∗∗ u; i + 1)

Ensuring Correctness of Compiled Code

(m[p + i]; i) := (i ∗∗∗∗ u; i + 1)

(I ≤≤≤≤10 ∧∧∧∧ K ≤≤≤≤ 0 ∧∧∧∧ i ≤≤≤≤ 10) →→→→
(M[P + I]; I) := (I ∗∗∗∗ (M[A] + C) ∗∗∗∗ K; I + 1)
(m[p + i]; i) := (i ∗∗∗∗ u; i + 1)

Construction of

Theorem:

The following are the properties of the construction algorithm
when it is applied to consonant programs:
• termination

Ensuring Correctness of Compiled Code

• soundness
• conditional completeness - false alarms
(it succeeds only if given strong enough invariants)

Construction of C = S X T

The following are the properties of the construction algorithm
when it is applied to consonant programs:

Ensuring Correctness of Compiled Code

false alarms
(it succeeds only if given strong enough invariants)

23

The CoVaC

S T

create C = S X T

check if C is a

(exp1 = exp2)?

Yes

Ensuring Correctness of Compiled Code

check if C is a
witness

Proof Error

CoVaC Tool

Equivalence Checking
OracleGlobal

Value Numbering

equal?
Yes

N
o

Ensuring Correctness of Compiled Code 24

A
ss
er
tio
n
C
he
ck
er

CVC3 Theorem
Prover

Heap equivalence
analysis

Alias analysis

Loop invariants

LLVM-based Implementation

• Why LLVM?

Ensuring Correctness of Compiled Code

• Typed low level intermediate language
• Aggressive intraprocedural
optimizations and analysis

• Easy to extend (add an optimization/analysis pass)
• Very well designed, documented, and supported !!!

based Implementation

Ensuring Correctness of Compiled Code

Typed low level intermediate language
intraprocedural and interprocedural

optimizations and analysis
Easy to extend (add an optimization/analysis pass)
Very well designed, documented, and supported !!!

25

CoVaC: Experimental Results

• Tested on third party implementation of classical algorithms like in
heapsort, mergesort, qsort, strcmp, shortest paths, etc

Ensuring Correctness of Compiled Code

: Experimental Results

Tested on third party implementation of classical algorithms like in-place
heapsort, mergesort, qsort, strcmp, shortest paths, etc

Ensuring Correctness of Compiled Code 26

Related Work
Certified Compilers: Given a source program, it either produces a target program
observationally equivalent to the source or raises an error.

l The CompCert verified compiler - a formal certification of a complete compilation chain
using the Coq proof assistant

l Cobalt, Rhodium – frameworks for writing compiler optimizations that can be
automatically proved sound

Validation algorithms specialized to particular optimizations:

Ensuring Correctness of Compiled Code

l Catching and identifying bugs in register allocation.(Huang et al. 2006)

l Formal verification of translation validators
optimizations and Verified validation of lazy

Compiler Bug Finding:

l Volatiles Are Miscompiled, and What to Do about It. (

l Practical testing of a C99 compiler using output comparison.(Sheridan 2007)

Related Work
Given a source program, it either produces a target program

observationally equivalent to the source or raises an error.

a formal certification of a complete compilation chain

frameworks for writing compiler optimizations that can be

Validation algorithms specialized to particular optimizations:

Ensuring Correctness of Compiled Code

Catching and identifying bugs in register allocation.(Huang et al. 2006)

validators: A case study on instruction scheduling
of lazy code motion (Tristan and Leroy 2008, 2009)

, and What to Do about It. (Eide and Regehr 2008)

Practical testing of a C99 compiler using output comparison.(Sheridan 2007)

27

Conclusion

• CoVaC
• Assumes the program is correct before compilation

• Constructs a proof that the optimization path of the compiler preserves
the semantics of the program

• Directions for future work

• Apply of CoVaC to development of a self

Ensuring Correctness of Compiled Code

• Apply of CoVaC to development of a self

• Currently, the validator is trying to guess the relation between the variables

• The compiler can provide that infromation

• Experiment with more lightweight analysis

• Extend of the set of supported optimizations

• add interprocedural and loop reordering optimizations

Conclusion

Assumes the program is correct before compilation

Constructs a proof that the optimization path of the compiler preserves

Apply of CoVaC to development of a self-certifying compiler

Ensuring Correctness of Compiled Code

Apply of CoVaC to development of a self-certifying compiler

Currently, the validator is trying to guess the relation between the variables

The compiler can provide that infromation

Experiment with more lightweight analysis

Extend of the set of supported optimizations

and loop reordering optimizations

28

Questions?

Ensuring Correctness of Compiled Code

Questions?

Ensuring Correctness of Compiled Code 29

