
Accelerating Ruby
with LLVM

Oct 2, 2009

Evan Phoenix

Tuesday, October 6, 2009

RUBY

Tuesday, October 6, 2009

Strongly, dynamically typed

RUBY

Tuesday, October 6, 2009

Unified Model

RUBY

Tuesday, October 6, 2009

Everything is an object

RUBY

Tuesday, October 6, 2009

3.class # => Fixnum
RUBY

Tuesday, October 6, 2009

Every code context is equal

RUBY

Tuesday, October 6, 2009

Every context is a method

RUBY

Tuesday, October 6, 2009

Garbage Collected

RUBY

Tuesday, October 6, 2009

A lot of syntax

RUBY

Tuesday, October 6, 2009

Every code context is equal
Every context is a method

Garbage collected
A lot of syntax

RUBY
Strongly, dynamically typed

Unified model
Everything is an object

3.class

Tuesday, October 6, 2009

Rubinius

Tuesday, October 6, 2009

Started in 2006

Rubinius

Tuesday, October 6, 2009

Build a ruby environment for fun

Rubinius

Tuesday, October 6, 2009

Unlike most “scripting” languages,
write as much in ruby as possible

Rubinius

Tuesday, October 6, 2009

Core functionality of perl/python/ruby in C,
NOT in their respective language.

Rubinius

Tuesday, October 6, 2009

C => ruby => C => ruby
Rubinius

Tuesday, October 6, 2009

Language boundaries suck

Rubinius

Tuesday, October 6, 2009

Started in 2006
Built for fun

Turtles all the way down

Rubinius

Tuesday, October 6, 2009

Evolution

Tuesday, October 6, 2009

100% ruby prototype running on 1.8

Evolution

Tuesday, October 6, 2009

Hand translated VM to C

Evolution

Tuesday, October 6, 2009

Rewrote VM in C++

Evolution

Tuesday, October 6, 2009

Switch away from stackless

Evolution

Tuesday, October 6, 2009

Experimented with handwritten
assembler for x86

Evolution

Tuesday, October 6, 2009

Switch to LLVM for JIT

Evolution

Tuesday, October 6, 2009

Evolution
100% ruby prototype

Hand translated VM to C
Rewrote VM in C++

Switch away from stackless
Experiment with assembler

Switch to LLVM for JIT

Tuesday, October 6, 2009

Features

Tuesday, October 6, 2009

Bytecode VM

Features

Tuesday, October 6, 2009

Simple interface to native code

Features

Tuesday, October 6, 2009

Accurate, generational garbage collector

Features

Tuesday, October 6, 2009

Integrated FFI API

Features

Tuesday, October 6, 2009

Features
Bytecode VM

Interface to native code
Generational GC

Integrated FFI

Tuesday, October 6, 2009

Benchmarks

Tuesday, October 6, 2009

def foo()
 ary = []
 100.times { |i| ary << i }
end

300,000 times
Tuesday, October 6, 2009

0

2.25

4.5

6.75

9

1.8 1.9 rbx rbx jit rbx jit +blocks

2.59

3.60

5.90

5.30

8.02

Seconds

Tuesday, October 6, 2009

def foo()
 hsh = {}
 100.times { |i| hsh[i] = 0 }
end

100,000 times
Tuesday, October 6, 2009

0

7.5

15

22.5

30

1.8 1.9 rbx rbx jit rbx jit +blocks

12.0112.54

25.36

5.264.85

Seconds

Tuesday, October 6, 2009

def foo()
 hsh = { 47 => true }
 100.times { |i| hsh[i] }
end

100,000 times
Tuesday, October 6, 2009

0

1.75

3.5

5.25

7

1.8 1.9 rbx rbx jit rbx jit +blocks

2.662.68

6.26

2.09

3.64

Seconds

Tuesday, October 6, 2009

Early LLVM Usage

Tuesday, October 6, 2009

Compiled all methods up front

Early LLVM Usage

Tuesday, October 6, 2009

Simple opcode-to-function translation
with inlining

Early LLVM Usage

Tuesday, October 6, 2009

Startup went from 0.3s to 80s

Early LLVM Usage

Tuesday, October 6, 2009

Early LLVM Usage
Compiled all methods upfront

Simple opcode-to-function translation
Startup from 0.3s to 80s

Tuesday, October 6, 2009

True JIT

Tuesday, October 6, 2009

JIT Goals

True JIT

Tuesday, October 6, 2009

JIT Goals

Choose methods that benefit the most

True JIT

Tuesday, October 6, 2009

JIT Goals

Compiling has minimum impact on performance

True JIT

Tuesday, October 6, 2009

JIT Goals

Ability to make intelligent frontend decisions

True JIT

Tuesday, October 6, 2009

Choosing Methods

Tuesday, October 6, 2009

Simple call counters

Choosing Methods

Tuesday, October 6, 2009

When counter trips, the fun starts

Choosing Methods

Tuesday, October 6, 2009

Room for improvement

Choosing Methods

Tuesday, October 6, 2009

Room for improvement

Increment counters in loops

Choosing Methods

Tuesday, October 6, 2009

Room for improvement

Weigh different invocations differently

Choosing Methods

Tuesday, October 6, 2009

Simple counters
Trip the counters, do it

Choosing Methods

Room for improvement
Increment in loops
Weigh invocations

Tuesday, October 6, 2009

Which Method?

Tuesday, October 6, 2009

Leaf methods trip quickly

Which Method?

Tuesday, October 6, 2009

Leaf methods trip quickly

Consider the whole callstack

Which Methods?

Tuesday, October 6, 2009

Leaf methods trip quickly

Pick a parent expecting inlining

Which Methods?

Tuesday, October 6, 2009

Leaf methods trip
Consider the callstack

Find a parent

Which Method?

Tuesday, October 6, 2009

Minimal Impact

Tuesday, October 6, 2009

After the counters trip

Minimal Impact

Tuesday, October 6, 2009

Queue the method

Minimal Impact

Tuesday, October 6, 2009

Background thread drains queue

Minimal Impact

Tuesday, October 6, 2009

Frontend, passes, codegen in background

Minimal Impact

Tuesday, October 6, 2009

Install JIT’d function

Minimal Impact

Tuesday, October 6, 2009

Install JIT’d function

Requires GC interaction

Minimal Impact

Tuesday, October 6, 2009

Trip the counters
Queue the method

Minimal Impact
Compile in background
Install function pointer

Tuesday, October 6, 2009

Good Decisions

Tuesday, October 6, 2009

Naive translation yields fixed improvement

Good Decisions

Tuesday, October 6, 2009

Performance shifts to method dispatch

Good Decisions

Tuesday, October 6, 2009

Improve optimization horizon

Good Decisions

Tuesday, October 6, 2009

Inline using type feedback

Good Decisions

Tuesday, October 6, 2009

Naive translation sucks
Inline using type feedback

Good Decisions

Performance in dispatch
Improve optimizations

Tuesday, October 6, 2009

Type Feedback

Tuesday, October 6, 2009

Frontend translates to IR

Type Feedback

Tuesday, October 6, 2009

Read InlineCache information

Type Feedback

Tuesday, October 6, 2009

InlineCaches contain profiling info

Type Feedback

Tuesday, October 6, 2009

Use profiling to drive inlining!

Type Feedback

Tuesday, October 6, 2009

Frontend generates IR
Reads InlineCaches

Type Feedback
InlineCaches have profiling

Use profiling to drive inlining!

Tuesday, October 6, 2009

Inlining

Tuesday, October 6, 2009

Profiling info shows a dominant class

Inlining

Tuesday, October 6, 2009

2
1%

1 class
98%

Tuesday, October 6, 2009

Lookup method in compiler

Inlining

Tuesday, October 6, 2009

For native functions, emit direct call

Inlining

Tuesday, October 6, 2009

For FFI, inline conversions and call

Inlining

Tuesday, October 6, 2009

Emit direct calls if possible

Inlining
Find dominant class

Lookup method

Tuesday, October 6, 2009

Inlining Ruby

Tuesday, October 6, 2009

Policy decides on inlining

Inlining Ruby

Tuesday, October 6, 2009

Drive sub-frontend at call site

Inlining Ruby

Tuesday, October 6, 2009

All inlining occurs in the frontend

Inlining Ruby

Tuesday, October 6, 2009

Generated IR preserves runtime data

Inlining Ruby

Tuesday, October 6, 2009

Generated IR preserves runtime data

GC roots, backtraces, etc

Inlining Ruby

Tuesday, October 6, 2009

No AST between bytecode and IR

Inlining Ruby

Tuesday, October 6, 2009

No AST between bytecode and IR

Fast, but limits the ability to generate better IR

Inlining Ruby

Tuesday, October 6, 2009

Policy decides
Drive sub-frontend

Inlining Ruby
Preserve runtime data
Generates fast, ugly IR

Tuesday, October 6, 2009

LLVM

Tuesday, October 6, 2009

IR uses operand stack

LLVM

Tuesday, October 6, 2009

IR uses operand stack

Highlevel data flow not in SSA

LLVM

Tuesday, October 6, 2009

IR uses operand stack

Passes eliminate redundencies

LLVM

Tuesday, October 6, 2009

IR uses operand stack

Makes GC stack marking easy

LLVM

Tuesday, October 6, 2009

IR uses operand stack

nocapture improves propagation

LLVM

Tuesday, October 6, 2009

Exceptions via sentinal value

LLVM

Tuesday, October 6, 2009

Exceptions via sentinal value

Nested handlers use branches for control

LLVM

Tuesday, October 6, 2009

Exceptions via sentinal value

Inlining exposes redundant checks

LLVM

Tuesday, October 6, 2009

Inline guards

LLVM

Tuesday, October 6, 2009

Inline guards

Simple type guards

LLVM

Tuesday, October 6, 2009

if(obj->class->class_id ==
 <integer constant>) {

Tuesday, October 6, 2009

Inline guards

Custom AA pass for guard elimination

LLVM

Tuesday, October 6, 2009

Inline guards

Teach pointsToConstantMemory about...

LLVM

Tuesday, October 6, 2009

if(obj->class->class_id ==
 <integer constant>) {

Tuesday, October 6, 2009

if(obj->class->class_id ==
 <integer constant>) {

Tuesday, October 6, 2009

Maximizing constant propagation

LLVM

Tuesday, October 6, 2009

Maximizing constant propagation

Type failures shouldn’t contribute values

LLVM

Tuesday, October 6, 2009

if(obj->class->class_id == 0x33) {
 val = 0x7;
} else {
 val = send_msg(state, obj, ...);
}

Tuesday, October 6, 2009

if(obj->class->class_id == 0x33) {
 val = 0x7;
} else {
 return uncommon(state);
}

Tuesday, October 6, 2009

Maximizing constant propagation

Makes JIT similar to tracing

LLVM

Tuesday, October 6, 2009

Use overflow intrinsics

LLVM

Tuesday, October 6, 2009

Use overflow intrinsics

Custom pass to fold constants arguments

LLVM

Tuesday, October 6, 2009

AA knowledge for tagged pointers

LLVM

Tuesday, October 6, 2009

AA knowledge of tagged pointers

0x5 is 2 as a tagged pointer

LLVM

Tuesday, October 6, 2009

Not in SSA form
Simplistic exceptions

Inlining guards

LLVM
Maximize constants

Use overflow
Tagged pointer AA

Tuesday, October 6, 2009

Issues

Tuesday, October 6, 2009

How to link with LLVM?

Issues

Tuesday, October 6, 2009

How to link with LLVM?

An important SCM issue

Issues

Tuesday, October 6, 2009

Ugly, confusing IR from frontend

Issues

Tuesday, October 6, 2009

instcombine confuses basicaa

Issues

Tuesday, October 6, 2009

Operand stack confuses AA

Issues

Tuesday, October 6, 2009

Inability to communicate semantics

Issues

Tuesday, October 6, 2009

Object* new_object(state)

Tuesday, October 6, 2009

Returned pointer aliases nothing

Only modifies state

If return value is unused, remove the call

Semi-pure?

Tuesday, October 6, 2009

Ugly IR
Linking with LLVM

Issues
AA confusion

Highlevel semantics

Tuesday, October 6, 2009

http://rubini.us
ephoenix@engineyard.com

Thanks!

Tuesday, October 6, 2009

http://rubini.us
http://rubini.us
mailto:ephoenix@engineyard.com
mailto:ephoenix@engineyard.com

