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RUBY
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Strongly, dynamically typed

RUBY
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Unified Model

RUBY
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Everything is an object

RUBY
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3.class # => Fixnum
RUBY
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Every code context is equal

RUBY
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Every context is a method

RUBY
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Garbage Collected

RUBY
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A lot of syntax

RUBY
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Every code context is equal
Every context is a method

Garbage collected
A lot of syntax

RUBY
Strongly, dynamically typed

Unified model
Everything is an object

3.class
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Rubinius
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Started in 2006

Rubinius
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Build a ruby environment for fun

Rubinius
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Unlike most “scripting” languages,
write as much in ruby as possible

Rubinius
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Core functionality of perl/python/ruby in C, 
NOT in their respective language.

Rubinius
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C => ruby => C => ruby
Rubinius
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Language boundaries suck

Rubinius
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Started in 2006
Built for fun

Turtles all the way down

Rubinius
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Evolution
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100% ruby prototype running on 1.8

Evolution
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Hand translated VM to C

Evolution

Tuesday, October 6, 2009



Rewrote VM in C++

Evolution

Tuesday, October 6, 2009



Switch away from stackless

Evolution
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Experimented with handwritten
assembler for x86

Evolution
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Switch to LLVM for JIT

Evolution
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Evolution
100% ruby prototype

Hand translated VM to C
Rewrote VM in C++

Switch away from stackless
Experiment with assembler

Switch to LLVM for JIT
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Features
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Bytecode VM

Features
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Simple interface to native code

Features
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Accurate, generational garbage collector

Features
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Integrated FFI API

Features
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Features
Bytecode VM

Interface to native code
Generational GC

Integrated FFI
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Benchmarks
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def foo()
  ary = []
  100.times { |i| ary << i }
end

300,000 times
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def foo()
  hsh = {}
  100.times { |i| hsh[i] = 0 }
end

100,000 times
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def foo()
  hsh = { 47 => true }
  100.times { |i| hsh[i] }
end

100,000 times
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Early LLVM Usage
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Compiled all methods up front

Early LLVM Usage
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Simple opcode-to-function translation
with inlining

Early LLVM Usage
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Startup went from 0.3s to 80s

Early LLVM Usage
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Early LLVM Usage
Compiled all methods upfront

Simple opcode-to-function translation
Startup from 0.3s to 80s
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True JIT
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JIT Goals

True JIT
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JIT Goals

Choose methods that benefit the most

True JIT
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JIT Goals

Compiling has minimum impact on performance

True JIT
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JIT Goals

Ability to make intelligent frontend decisions

True JIT
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Choosing Methods
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Simple call counters

Choosing Methods
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When counter trips, the fun starts

Choosing Methods
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Room for improvement

Choosing Methods
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Room for improvement

Increment counters in loops

Choosing Methods
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Room for improvement

Weigh different invocations differently

Choosing Methods
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Simple counters
Trip the counters, do it

Choosing Methods

Room for improvement
Increment in loops
Weigh invocations
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Which Method?
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Leaf methods trip quickly

Which Method?
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Leaf methods trip quickly

Consider the whole callstack

Which Methods?
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Leaf methods trip quickly

Pick a parent expecting inlining

Which Methods?
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Leaf methods trip
Consider the callstack

Find a parent

Which Method?
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Minimal Impact
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After the counters trip

Minimal Impact
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Queue the method

Minimal Impact
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Background thread drains queue

Minimal Impact
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Frontend, passes, codegen in background

Minimal Impact
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Install JIT’d function 

Minimal Impact
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Install JIT’d function

Requires GC interaction

Minimal Impact
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Trip the counters
Queue the method

Minimal Impact
Compile in background
Install function pointer
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Good Decisions
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Naive translation yields fixed improvement

Good Decisions
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Performance shifts to method dispatch

Good Decisions
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Improve optimization horizon

Good Decisions
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Inline using type feedback

Good Decisions
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Naive translation sucks
Inline using type feedback

Good Decisions

Performance in dispatch
Improve optimizations
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Type Feedback
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Frontend translates to IR

Type Feedback
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Read InlineCache information

Type Feedback
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InlineCaches contain profiling info

Type Feedback
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Use profiling to drive inlining!

Type Feedback
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Frontend generates IR
Reads InlineCaches

Type Feedback
InlineCaches have profiling

Use profiling to drive inlining!
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Inlining
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Profiling info shows a dominant class

Inlining
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2
1%

1 class
98%
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Lookup method in compiler

Inlining
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For native functions, emit direct call

Inlining
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For FFI, inline conversions and call

Inlining
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Emit direct calls if possible

Inlining
Find dominant class

Lookup method
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Inlining Ruby
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Policy decides on inlining

Inlining Ruby
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Drive sub-frontend at call site

Inlining Ruby
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All inlining occurs in the frontend

Inlining Ruby
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Generated IR preserves runtime data

Inlining Ruby
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Generated IR preserves runtime data

GC roots, backtraces, etc

Inlining Ruby
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No AST between bytecode and IR

Inlining Ruby
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No AST between bytecode and IR

Fast, but limits the ability to generate better IR

Inlining Ruby
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Policy decides
Drive sub-frontend

Inlining Ruby
Preserve runtime data
Generates fast, ugly IR
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LLVM
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IR uses operand stack

LLVM
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IR uses operand stack

Highlevel data flow not in SSA

LLVM
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IR uses operand stack

Passes eliminate redundencies

LLVM
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IR uses operand stack

Makes GC stack marking easy

LLVM
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IR uses operand stack

nocapture improves propagation

LLVM
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Exceptions via sentinal value

LLVM
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Exceptions via sentinal value

Nested handlers use branches for control

LLVM
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Exceptions via sentinal value

Inlining exposes redundant checks

LLVM
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Inline guards

LLVM
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Inline guards

Simple type guards

LLVM
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if(obj->class->class_id == 
 <integer constant>) {
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Inline guards

Custom AA pass for guard elimination

LLVM
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Inline guards

Teach pointsToConstantMemory about...

LLVM
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if(obj->class->class_id == 
 <integer constant>) {
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if(obj->class->class_id == 
 <integer constant>) {
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Maximizing constant propagation

LLVM
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Maximizing constant propagation

Type failures shouldn’t contribute values

LLVM
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if(obj->class->class_id == 0x33) {
  val = 0x7;
} else {
  val = send_msg(state, obj, ...);
}
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if(obj->class->class_id == 0x33) {
  val = 0x7;
} else {
  return uncommon(state);
}
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Maximizing constant propagation

Makes JIT similar to tracing

LLVM
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Use overflow intrinsics

LLVM
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Use overflow intrinsics

Custom pass to fold constants arguments

LLVM
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AA knowledge for tagged pointers

LLVM
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AA knowledge of tagged pointers

0x5 is 2 as a tagged pointer

LLVM
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Not in SSA form
Simplistic exceptions

Inlining guards

LLVM
Maximize constants

Use overflow
Tagged pointer AA
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Issues
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How to link with LLVM?

Issues
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How to link with LLVM?

An important SCM issue

Issues
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Ugly, confusing IR from frontend

Issues
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instcombine confuses basicaa

Issues
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Operand stack confuses AA

Issues
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Inability to communicate semantics

Issues
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Object* new_object(state)
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Returned pointer aliases nothing

Only modifies state

If return value is unused, remove the call

Semi-pure?
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Ugly IR
Linking with LLVM

Issues
AA confusion

Highlevel semantics
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http://rubini.us
ephoenix@engineyard.com

Thanks!
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