
Secure Virtual Architecture:
Using LLVM to Provide Memory Safety to the
Entire Software Stack

John Criswell, University of Illinois
Andrew Lenharth, University of Illinois

Dinakar Dhurjati, DoCoMo Communications Laboratories, USA
Vikram Adve, University of Illinois

What is Memory Safety?

Intuitively, the guarantees provided by a safe programming
language (e.g., Java, C#)

 Array indexing stays within object bounds
 No uses of uninitialized variables
 All operations are type safe
 No uses of dangling pointers
 Control flow obeys program semantics
 Sound operational semantics

Benefits of Memory Safety for
Commodity OS Code
 Security

 Memory error vulnerabilities in OS kernel code are a
reality1

 Novel Design Opportunities
 Safe kernel extensions (e.g. SPIN)
 Single address space OSs (e.g. Singularity)

 Develop New Solutions to Higher-Level Security
Challenges
 Information flow policies
 Encoding security policies in type system

1. Month of Kernel Bugs (http://projects.info-pull.com/mokb/)

Secure Virtual Architecture

 Compiler-based virtual machine underneath software stack
 Uses analysis & transformation techniques from compilers

 Supports commodity operating systems (e.g., Linux)

 Typed virtual instruction set enables sophisticated program analysis

 Provide safe execution environment for commodity OSs

Commodity OS

HardwareCompiler + VM
Virtual ISA
Native ISA

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

Memory Safety
Run-time Library

Hardware

OS Memory Allocator

SVA Virtual
Machine

SVA System Architecture

Applications

OS Kernel

SVA ISA

Native ISA

Safety Checking Compiler

Drivers

Native Code Generator

SVA-OS Run-time
Library

Safety Verifier

Hardware

Software Flow

Safety Checking
Compiler

Safety Verifier

Code Generator

Compile-Time: Install/Load/Run-Time:

Kernel/Application
Source

Bytecode
with

Safe Types

Bytecode
+

Run-Time Checks

Native Code

Hardware

TCB

Virtual Instruction Set

 SVA-Core
 Subset of LLVM Instruction Set1,2

 Typed, Explicit Control Flow Graph, Explicit SSA form

 Sophisticated compiler analysis and transformation

 SVA-OS
 OS-neutral instructions support commodity OSs

 Removes difficult to analyze assembly code

 Encapsulates privileged operations

 Like porting to a new hardware architecture
1. [CGO 2004]
2. http://llvm.org

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

SVA Safety Guarantees

Dangling pointers are harmlessNo uses of dangling pointers

Sound operational semanticsSound operational semantics

Control flow integrityControl flow integrity

Type safety for subset of objectsType safety for all objects

No uses of uninitialized variablesNo uses of uninitialized variables

Array indexing within boundsArray indexing within bounds

Secure Virtual ArchitectureSafe Language

 Dangling pointers & non-type-safe objects do not compromise
other guarantees

 Stronger than systems that do not provide any dangling pointer
protection

Safety Checks & Transforms

 Safety Checks
 Load/Store Checks

 Bounds Checks

 Illegal Free Checks

 Indirect Call Checks

 Safety Transforms
 Stack to heap promotion

 Memory initialization

Object Bounds Tracking Methods

 “Fat” Pointers [SafeC, CCured, Cyclone,…]

 Programmer Annotations [SafeDrive,…]

 Object Lookups [Jones-Kelly,SAFECode,…]

Improved Object Lookups1

 Alias analysis (DSA) groups objects into logical partitions

 Run-time records object allocations in partitions

 Run-time checks only consider objects in a single partition

 Reduces slowdown from 4x-11x to 10%-30% for nearly all
standalone programs, daemons

Memory

Partitioned
Object Set

Pointers

1. Dhurjati et al. [ICSE 2006]

Type Safe (Homogeneous) Partitions1

 Alias analysis performs type
inference

 Type-homogeneous partitions
reduce run-time checks:
 No load/store checks

 No indirect call checks

 Harmless dangling pointers

 Type-unsafe partitions require
all run-time checks

 Proved sound operational
semantics [PLDI 2006]

1. Dhurjati et al. [TECS 2005, PLDI 2006]

Memory

Blue Partition

Red Partition

Memory Allocator Requirements

 Memory for type-homogeneous partitions cannot be used by
other partitions

 Objects must be aligned at a multiple of the object size

Pre-existing PoolStandard Allocators

Outline

 SVA Architecture

 SVA Safety

 Experimental Results

Prototype Implementation

 Ported Linux to SVA instruction set
 Similar to porting to new hardware architecture

 Compiled using LLVM

 Wrote SVA-OS as run-time library linked into kernel

 Provide safety guarantees to entire kernel except:
 Memory management code

 Architecture-dependent utility library

 Architecture-independent utility library

Web Server Bandwidth

 Each measurement is median of 3 runs

 Memory safety overhead less than 70%

58%

60%

62%

64%

66%

68%

70%

72%

1 2 4 8 16 32 64 128 256

File Size in KB

P
e

r
c

e
n

t
B

a
n

d
w

id
th

R
e

d
u

c
ti

o
n

 R
e

la
ti

v
e

 t
o

N
a

ti
v

e

Apache

Exploits

 Tried 5 memory exploits that work on Linux 2.4.22

 Uncaught exploit due to code not instrumented with checks

NoELF/Support Library13589

Yes!Bluetooth Protocol12911

Yes!TCP/IP11917

Yes!TCP/IP10179

Yes!Console Driver11956

Caught?Kernel ComponentBugTraq ID

Performance Improvements

 Source code changes

 Smarter run-time checks
 Selective use of “fat” pointers

 Pre-checking all accesses within monotonic loops

 Removing redundant object lookups and run-time checks

 Very fast indirect call checks

 Improve static analysis
 Stronger type inference

 More precise call graph

 Restore context sensitivity

 Static array bounds checking

Future Work

 Ensure safe use of:
 SVA-OS instructions

 MMU configuration

 DMA operations

 Novel OS Designs
 Recovery semantics for the virtual machine

 Private application memory

 Information flow

SAFECode Release

 Currently building memory debugger tool
 Array bounds checks

 Uninitialized pointer checks

 Invalid control flow checks

 Optional dangling pointer detection1

1. Dhurjati et al. [DSN 2006]

Extras!

See what we do at http://sva.cs.uiuc.edu

